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Abstract
Magnetic monopoles, which are particle-like field configurations with which
one can associate a topological charge, widely exist in various three-
dimensional condensate systems. In this paper, by making use of Duan’s
topological current theory, we obtain the charge density of magnetic monopoles
and their bifurcation theory in a charged two-condensate Bose–Einstein system.
The evolution of magnetic monopoles is studied from the topological properties
of a three-dimensional vector field. The magnetic monopoles are found
generating or annihilating at the limit points and encountering, splitting or
merging at the bifurcation points.

PACS numbers: 74.20.De, 03.75.Mn, 14.80.Hv

1. Introduction

An elementary particle with a net magnetic charge is an old hypothetical particle called
magnetic monopole which arises in classical electromagnetism and has never been seen in the
real world. Modern interest in the magnetic monopole focuses on quantum field theory, notably
grand unified theories and superstring theories, that predict the existence of the possibility of
magnetic monopoles. In 1931, Dirac [1] proposed that the magnetic monopole with an
attached Dirac string may exist in quantum electrodynamics by their phenomenon of electric
charge quantization. In 1974, it was shown by ’t Hooft [2] and Polyakov [3] that a magnetic
monopole could be regarded as topological excitations in a quantum field theory due to the
spontaneous symmetry breaking mechanism. The quantized magnetic charge was interpreted
as the topological charge of the magnetic monopole. After ’t Hooft and Polyakov’s works,
Duan and Ge [4] studied the rigorous topological expressions of many moving magnetic
monopoles, which could not be derived from ’t Hooft and Polyakov’s theory. It also revealed
the inner structures of the magnetic charge density current and showed that the zero points
of the Higgs field were a point-like source of the magnetic monopole. Recently, the theory of
the magnetic monopole has been frequently employed in studying the grand unified theories,
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the phase transitions in the early universe, and the topological excitations in condensed matter
physics.

In condensed matter physics, there are also topological objects that imitate magnetic
monopoles. In chiral superconductors and superfluids, the magnetic monopole excitations
have been well studied by Volovik [5], and such a magnetic monopole is the analog of a
Dirac magnetic monopole which combined with two Abrikosov vortices or four half-quantum
vortices. These vortex lines represent the ‘conventional’ Dirac string. Such Dirac-like
monopoles has been investigated also in ferromagnetic spinor Bose–Einstein condensates [6].
Besides the analog of the Dirac magnetic monopole, the ‘ ’t Hooft–Polyakov monopole’
can also be introduced to condensed matter physics [8, 9]. In spinor Bose–Einstein
antiferromagnets, such a point-like monopole has recently been worked out by a number
of authors [7, 8]. Moreover, in a charged two-condensate Bose–Einstein system, such a
monopole which has a quantized magnetic charge and can be regarded as a real magnetic
monopole has been proposed recently by Jiang [9]. The induced magnetic field of a magnetic
monopole and their rigorous density distribution expression have been deduced by using
Duan’s topological current theory [19, 20]. As indicated in the above paragraph, the magnetic
monopole excitations have already been studied in the context of quantum field theory.
Therefore, as pointed out in [7], magnetic monopole excitations in condensed matter offer the
exciting opportunity to study the properties of magnetic monopoles in detail. Undoubtedly,
this will lead to important new insights into the general topic of topological excitations in a
quantum field theory.

Furthermore, two-gap superconductivity has drawn great interest recently due to the
discovery of the two-band superconductor with surprisingly high critical temperature MgB2
[10]. Two-gap superconductivity is being supported by an increasing number of experimental
reports. Principally, the two-gap superconductivity can be investigated in the frame of a
charged two-condensate Bose system [9, 11, 12]. This system is described by a Ginzburg–
Landau model with two flavors of Cooper pairs. Alternatively, it relates to a Gross–Pitaevskii
functional with two charged condensates of tightly bound fermion pairs, or some other
charged bosonic fields. Such theoretical models have a wider range of applications, including
interference between two Bose condensates [13], a multiband superconductor [14], two-
component Bose–Einstein condensates [15] and a superconducting gap structure of spin-
triplet superconductor Sr2RuO4 [16]. Using this theoretical model, two typical topological
excitations have been presented. One is the knotted vortices [11, 12], and the other is the
magnetic monopoles [9]. The main purpose of this paper is to discuss the topological properties
of the magnetic monopole excitations in a charged two-condensate Bose system.

In [9], Jiang has proposed the magnetic monopole excitation in a charged two-condensate
Bose system, and by using the Duan’s topological current theory, the rigorous density
distribution expression of the magnetic monopole has been deduced. The topological charges
of magnetic monopoles can be expressed in terms of the Hopf indices and Brouwer degrees.
However, Jiang’s conclusions are based on a very important condition that the Jacobian
D(φ/x) �= 0 must be satisfied. When this condition fails, what will happen? In this paper, we
will investigate the behavior of the magnetic monopole when this condition fails.

This paper is arranged as follows. In section 2, we give a prime view of the derivation
of the topological structure of magnetic monopoles. The magnetic monopoles are quantized
at the topological level and their quantum numbers are determined by the Hopf indices and
Brouwer degree. In section 3, we introduce the generation and annihilation of magnetic
monopoles at the limit point. The bifurcation theory of magnetic monopoles at the first- and
second-order degenerate points are investigated in sections 4 and 5, respectively. Section 6
gives our conclusions.
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2. Magnetic monopole excitations in a charged two-condensate Bose–Einstein system: a
prime introduction

In order to make the background of this paper clear, in this section we will give a brief
review of the magnetic monopole excitations in a charged two-condensate Bose–Einstein
system. First, let us consider a Bose–Einstein system with two electromagnetically coupled,
oppositely charged condensates, which can be described by a two-flavor (denoted by α = 1, 2)
Ginzburg–Landau or Gross–Pitaevskii (GLGP) functional [12], whose free energy density is
given by

F = 1

2m1

∣∣∣∣
(
h̄∂µ + i

2e

c
Aµ

)
�1

∣∣∣∣
2

+
1

2m2

∣∣∣∣
(
h̄∂µ − i

2e

c
Aµ

)
�2

∣∣∣∣
2

+ V (�1,2) +
�B2

8π
, (1)

in which

V (�1,2) = −bα|�α|2 +
cα

2
|�α|4 + η[�∗

1 �2 + �∗
2 �1], (2)

where η is a characteristic of interband Josephson coupling strength [17]. The properties of
the corresponding model with a single charged two-condensate Bose–Einstein system are well
known. And the relevant field degrees of freedom are the massive coefficient of the single
complex order parameter and a vector field that gains a mass because of the Meissner–Higgs
effect. What is very important in the present GLGP model is that the two charged fields are not
independent but nontrivially coupled through the electromagnetic field, which indicate that
there should be a nontrivial, hidden topology in this system. However, it cannot be recognized
obviously in the form of equation (1). For working out the topological structure and studying
it conveniently, we need to reform the GLGP functional. Babaev et al [12] introduce a set of
variables ρ and χ1,2 by

�α =
√

2mαρχα, (3)

where the complex χα = |χα|eiϕα satisfying |χ1|2 + |χ2|2 = 1 and ρ has the following
expression

ρ2 = 1

2

( |�1|2
m1

+
|�2|2
m2

)
, (4)

where ρ is a massive field which is related to the densities of the Cooper pair. Using
the variables χ1,2 and Pauli matrices σ , we define the three-dimensional unit vector field
�n = (χ̄ , �σχ), where (, ) denotes the scalar product and χ̄ = (χ∗

1 χ∗
2 ). Then the original GLGP

free energy density equation (1) can be represented as

F = h̄2ρ2

4
(∂�n)2 + h̄2(∂ρ)2 +

ρ2

16
�C2 + V (ρ, n1, n3)

+
h̄2c2

512πe2

(
1

h̄
[∂µCν − ∂νCµ] − �n · ∂µ�n × ∂ν �n

)2

, (5)

where

Cµ = 2ih̄[χ1∂µχ∗
1 − χ∗

1 ∂µχ1 − χ2∂µχ∗
2 + χ∗

2 ∂µχ2] − 8e

c
Aµ. (6)

Now we find that there exists an exact equivalence between the two-flavor GLGP model and
the nonlinear O(3)σ model [18] that is much more important to describe the topological
structure in high energy physics. In this paper, based on Duan-Ge’s decomposable gauge
potential theory and Duan’s topological current theory, we display that there exists another
kind of topological defect, namely the magnetic monopoles in this system.
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As shown in equation (5), we know that the magnetic field of the system can be divided
into two parts. One part, is the contribution of field Cµ which is introduced by the supercurrent
density and can only present us with the topological defects named vortices, as what is in the
single-condensate system. The other part is the contribution �n · ∂µ�n × ∂ν �n to the magnetic
field, which originates from interactions of Cooper pairs of two different flavors and is a
fundamentally important property of the two-condensate system.

The induced magnetic field Bµ due to �n · ∂µ�n × ∂ν �n term is expressed as

Bµ = h̄c

8πe
εµνλεabcn

a∂νn
b∂λn

c. (7)

Then, the divergence of the induced magnetic field, namely Q, can be represented in terms of
the unit vector field na as

Q = ∂µBµ = h̄c

8πe
εµνλεabc∂µna∂νn

b∂λn
c, (8)

this is just the magnetic charge density of the system ρm, which is the time component of the
topological current

Jµ
m = h̄c

8πe
εµνλρεabc∂νn

a∂λn
b∂ρn

c, (µ, ν, λ, ρ = 0, 1, 2, 3). (9)

It is easy to see that the current (9) is identically conserved,

∂µJµ
m = 0. (10)

In order to investigate the topological structure of the magnetic charge current, we introduce a
three-component vector order parameter �φ = (φ1, φ2, φ3) formed by the unit vector �n which
satisfies

na = φa

‖φ‖ , ‖φ‖ =
√

φaφa, (a = 1, 2, 3). (11)

Obviously, the order parameter �φ can be looked upon as a smooth mapping between the
three-dimensional space X (with the local coordinate x) and the three-dimensional Euclidean
space R3φ : x �−→ �φ(x) ∈ R3. na is a section of sphere bundle S(X).

Applying Duan’s topological current theory [19, 20], one can obtain

Jµ
m = h̄c

e
δ3(�φ)Dµ

(
φ

x

)
, (12)

and the Jacobian Dµ
(

φ

x

)
is defined as

εabcDµ

(
φ

x

)
= εµνλρ∂νφ

a∂λφ
b∂ρφ

c. (13)

The delta function expression (12) of the topological current J
µ
m tells us that it does not vanish

only at the zero points of �φ, i.e., the sites of the magnetic monopole. The implicit function
theorem [21] shows that under the regular condition

D0

(
φ

x

)
�= 0, (14)

the general solutions of

φa(x1, x2, x3, t) = 0, (a = 1, 2, 3). (15)

The solutions of equation (15) can be generally expressed as

x1 = x1
i (t), x

2 = x2
i (t), x

3 = x3
i (t), (i = 1, 2, . . . , K)
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that represent the world lines of K isolated zero points �zi(t)(i = 1, 2, . . . , K). These zero
points are just the magnetic monopole excitations, and the ith world line �zi(t) determines the
motion of the ith magnetic monopole.

The δ-function theory [22] demonstrates the relation

δ3(�φ) =
K∑

i=1

βi∣∣D (
φ

x

)∣∣
�zi

δ3(�r − zi(t)),

where the positive integer βi is the Hopf index of φ-mapping, which means that when �r covers
the neighborhood of the zero point �zi(t) once, the vector field �φ covers the corresponding
region in φ space βi times, which is a topological number of first Chern class and relates to the
generalized winding number of the φ-mapping. With the definition of the vector Jacobian (13),
and using the implicit function theorem, the general velocity of the ith magnetic monopole
can be introduced

V
µ

i = dz
µ

i

dt
= Dµ

(
φ

x

)
D

(
φ

x

)
∣∣∣∣∣
�zi

, V 0
i = 1. (16)

Then, we can get the magnetic charge current J
µ
m in the form of the current and the density of a

system of K classical point particles in (3+1)-dimensional spacetime with topological charge
Wi = βiηi

�jm = h̄c

e

K∑
i=1

Wi
�Viδ

3(�r − �zi(t)),

(17)

ρm = h̄c

e
δ3(�φ)D

(
φ

x

)
= h̄c

e

K∑
i=1

Wiδ
3(�r − �zi(t)),

where ηi = sgn
(
D

(
φ

x

)| �zi

) = ±1 is the Brouwer degree, and Wi = βiηi is the winding number
of �φ at the zero point �zi(t). It is clear that equation (17) describes the motion of the magnetic
monopoles in spacetime, and the topological quantum numbers are determined by the Hopf
indices βi and Brouwer degrees ηi of the φ-mapping at its zeros. Here, ηi = +1 corresponds
to a magnetic monopole and ηi = −1 corresponds to an anti-magnetic monopole.

3. The generation and annihilation of magnetic monopoles

As investigated before, the equations of �φ’s zeros play an important role in describing the
topological structures of the magnetic monopole in a charged two-condensate Bose–Einstein
system. Now we begin discussing the properties of the zero points, in other words, the
properties of the solutions of equation (15). As we knew before, if the Jacobian

D0

(
φ

x

)
�= 0, (18)

we will have the isolated zeros of the vector field �φ. The isolated solutions are called regular
points. However, when the condition (18) fails, the usual implicit function theorem [21] is of
no use. The above discussion will change in some way and lead to the branch process. Now,
we denote one of the zero points as (t∗, �x∗). Let us explore what happen to the magnetic
monopoles. In Duan’s topological current theory, there are usually two kinds of branch points,
the limit points and bifurcation points, satisfying

Di

(
φ

x

)∣∣∣∣
(t∗, �x∗)

�= 0, i = 1, 2, 3 (19)
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and

Di

(
φ

x

)∣∣∣∣
(t∗, �x∗)

= 0, i = 1, 2, 3, (20)

respectively. Here, we consider the case (19). The other case (20) is complicated and will be
treated in sections 3 and 4. In order to be simple and without losing generality, we choose
i = 1.

If the Jacobian

D1

(
φ

x

)∣∣∣∣
(t∗, �x∗)

�= 0, (21)

we can use the Jacobian D1
(

φ

x

)
instead of D0

(
φ

x

)
for the purpose of using the implicit function

theorem. This means we will replace the timelike variable x0 = t by x1. For seeing this point
clearly, we rewrite the equations of (15) as

�φ(x1, x2, x3, t) = 0. (22)

Then we have a unique solution of equation (15) in the neighborhood of the limit point (t∗, �x∗)

t = t (x1), x2 = x2(x1), x3 = x3(x1), (23)

with t∗ = t (x1∗). We call the critical points (t∗, �x∗) the limit points. In the present case, we
know that

dx1

dt

∣∣∣∣
(t∗, �x∗)

= D1
(

φ

x

)
D

(
φ

x

)
∣∣∣∣∣
(t∗, �x∗)

= ∞, (24)

i.e.,

dt

dx1

∣∣∣∣
(t∗, �x∗)

= 0. (25)

Then the Taylor expansion of t = t (x1) at the limit point (t∗, �x∗) is

t − t∗ = 1

2

d2t

(dx1)2

∣∣∣∣
(t∗, �x∗)

(
x1 − z1

l

)2
, (26)

which is a parabola in the x1 − t plane. From equation (26) we can obtain two solutions x1
1(t)

and x1
2(t), which give two branch solutions (world lines of magnetic monopoles). If

d2t

(dx1)2

∣∣∣∣
(t∗, �x∗)

> 0. (27)

We have the branch solutions for t > t∗ (see figure 1(a)); otherwise, we have the branch
solutions for t < t∗ (see figure 1(b)). These two cases are related to the origin and annihilation
of magnetic monopoles.

One of the results of equation (24), that the velocity are infinite when they are annihilating,
agrees with the fact obtained by Bray [23] who has a scaling argument associated with the
point defects final annihilation which leases to a large velocity tail. From equation (24), we
also obtain a new result that the velocity field is infinite when they are generating, which is
gained only from the topology of the vector function �φ.

Since topological current is identically conserved, the topological charges of these two
generated or annihilated magnetic monopoles must be opposite at the limit point, i.e.,

βl1ηl1 = −βl2ηl2 , (28)

which shows that βl1 = βl2 and ηl1 = −ηl2 , which is important in the charged two-component
Bose–Einstein system. One can see the fact that the Brouwer degree η is indefinite at the

6



J. Phys. A: Math. Theor. 41 (2008) 315214 S-F Mo et al

(a)

(b)

Figure 1. Projecting the world lines of magnetic monopoles onto the (x1 − t) plane. (a) The
branch solutions for equation (26) when d2t/(dx1)2|(t∗,�zl ) > 0, i.e., two magnetic monopoles
with opposite charges generate at the limit point, i.e., the origin of magnetic monopoles. (b) The
branch solutions for equation (26) when d2t/(dx1)2|(t∗,�zl ) < 0, i.e., two magnetic monopoles with
opposite charges annihilate at the limit point.

limit points implies and can change discontinuously at limit points along the world lines of
the magnetic monopoles (from ±1 to ∓1).

For a limit point it is required that D1
(

φ

x

)∣∣
(t∗, �x∗) �= 0. As to a bifurcation point [24], it

must satisfy a more complex condition. This case will be discussed in the following section.

4. Bifurcation of magnetic monopoles

In this section we have the restrictions of equation (20) at the bifurcation points (t∗, �x∗),

D

(
φ

x

)∣∣∣∣
(t∗, �x∗)

= 0, Di

(
φ

x

)∣∣∣∣
(t∗, �x∗)

= 0, i = 1, 2, 3, (29)

which leads to an important fact that the function relationship between t and �x is not unique
in the neighborhood of the bifurcation point (t∗, �x∗). In our dynamic form of charge current,
this fact can be seen easily from equation (16)

dxi

dt
= Di

(
φ

x

)
D

(
φ

x

)
∣∣∣∣∣
(t∗, �x∗)

, i = 1, 2, 3, (30)

7



J. Phys. A: Math. Theor. 41 (2008) 315214 S-F Mo et al

which under equation (29) directly shows that the direction of the integral curve of
equation (30) is indefinite at (t∗, �x∗), i.e., the velocity field of the magnetic monopoles is
indefinite at (t∗, �x∗). That is why the very point (t∗, �x∗) is called a bifurcation point.

Assume that the bifurcation point (t∗, �x∗) has been found from equation (15) and (29).
We know that, at the bifurcation point, the rank of the Jacobian matrix

[
∂φ

∂x

]
is less than 3. We

suppose

rank

[
∂φ

∂x

]∣∣∣∣
(t∗, �x∗)

= 3 − 1 = 2, (31)

and let

Di

(
φ

x

)∣∣∣∣
(t∗, �x∗)

=

∣∣∣∣∣∣∣∣
∂φ1

∂x2

∂φ1

∂x3

∂φ2

∂x2

∂φ2

∂x3

∣∣∣∣∣∣∣∣ �x∗

�= 0, (32)

which means x∗ is a first-order degenerate point of the φ-mapping theory. (The case that x∗ is
a second-order degenerate point will be given in detail in the following section.) From φ1 = 0
and φ2 = 0, the implicit function theorem implies that there exists one and only one system
of function relationships

x2 = x2(t, x1), x3 = x3(t, x1). (33)

Substituting (33) into φ1 and φ2, we can obtain

φb(t, x1, x2(t, x1), x3(t, x1)) ≡ 0, b = 1, 2 (34)

which give
3∑

j=2

φb
j x

j

0 = −φb
0 ,

3∑
j=2

φb
j x

j

1 = −φb
1 , (35)

3∑
j=2

φb
j x

j

00 = −
3∑

j=2

[
2φb

j0x
j

1 +
3∑

k=2

(
φb

jkx
k
0

)
x

j

1

]
− φb

01, (36)

3∑
j=2

φb
j x

j

01 = −
3∑

j=2

[
φb

j0x
j

1 + φb
j1x

j

0 +
3∑

k=2

(
φb

jkx
k
0

)
x

j

0

]
− φb

00, (37)

3∑
j=2

φb
j x

j

11 = −
3∑

j=2

[
2φb

j1x
j

1 +
3∑

k=2

(
φb

jkx
k
1

)
x

j

1

]
− φb

11, (38)

where b = 1, 2; j, k = 2, 3; and

x
j

0 = ∂xj

∂t
, x

j

1 = ∂xj

∂x1
, x

j

00 = ∂2xj

∂t2
, x

j

01 = ∂2xj

∂t∂x1
, x

j

11 = ∂2xj

(∂x1)2
, (39)

φb
0 = ∂φb

∂t
, φb

1 = ∂φb

∂x1
, φb

j = ∂φb

∂xj
, φb

00 = ∂2φb

∂t2
, φb

01 = ∂2φb

∂t∂x1
, (40)

φb
11 = ∂2φb

(∂x1)2
, φb

j0 = ∂2φb

∂t∂xj
, φb

j1 = ∂2φb

∂x1∂xj
, φb

jk = ∂2φb

∂xj∂xk
. (41)

From these expressions we can calculate the values of the first- and second-order partial
derivatives of (33) with respect to t and x1 at the bifurcation point �x∗.
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Here we must note that the above discussions do not relate to the last component φ3(�x, t)

of the vector order parameter �φ. With the aim of finding the different directions of all branch
curves at the bifurcation point, let us investigate the Taylor expansion of

F(t, x1) = φ3(t, x1, x2(t, x1), x3(t, x1)), (42)

in the bifurcation point, which must vanish at the bifurcation point, i.e.,

F(t∗, x1∗) = 0. (43)

From (42), the first-order partial derivatives of F(t, x1) is

∂F

∂t
= ∂φ3

∂t
+

3∑
j=2

∂φ3

∂xj
x

j

0 ,
∂F

∂x1
= ∂φ3

∂x1
+

3∑
j=2

∂φ3

∂xj
x

j

1 . (44)

On the other hand, making use of (32), (35), (44) and Cramer’s rule, it is not difficult to prove
that the two restrictive conditions in (29) can be rewritten as

D

(
φ

x

)∣∣∣∣
(t∗, �x∗)

= ∂F

∂x1
D1

(
φ

x

)∣∣∣∣
(t∗, �x∗)

= 0, (45)

D1

(
φ

x

)∣∣∣∣
(t∗, �x∗)

= ∂F

∂t
D1

(
φ

x

)∣∣∣∣
(t∗, �x∗)

= 0. (46)

By considering (32), the above equations give

∂F

∂t

∣∣∣∣
(t∗, �x∗)

= 0,
∂F

∂x1

∣∣∣∣
(t∗, �x∗)

= 0. (47)

The second-order partial derivatives of the function F(t, x1) are easily found to be

∂2F

∂t2
= φ3

00 +
3∑

j=2

[
2φ3

j0x
j

0 + φ3
j x

j

00 +
3∑

k=2

(
φ3

jkx
k
0

)
x

j

0

]
, (48)

∂2F

∂t∂x1
= φ3

11 +
3∑

j=2

[
φ3

j0x
j

1 + φ3
j1x

j

0 + φ3
j x

j

01 +
3∑

k=2

(
φ3

jkx
k
0

)
x

j

0

]
, (49)

∂2F

(∂x1)2
= φ3

11 +
3∑

j=2

[
2φ3

j1x
j

1 + φ3
j x

j

11 +
3∑

k=2

(
φ3

jkx
k
1

)
x

j

1

]
, (50)

which at x∗ = (t∗, �x∗) are denoted by

A = ∂2F

∂t2

∣∣∣∣
(t∗, �x∗)

, B = ∂2F

∂t∂x1

∣∣∣∣
(t∗, �x∗)

, C = ∂2F

(∂x1)2

∣∣∣∣
(t∗, �x∗)

, (51)

where j, k = 2, 3 and

φ3
j = ∂φ3

∂xj
, φ3

00 = ∂2φ3

∂t2
, φ3

01 = ∂2φ3

∂t∂x1
, φ3

11 = ∂2φ3

(∂x1)2
, (52)

φ3
j0 = ∂2φ3

∂t∂xj
, φ3

j1 = ∂2φ3

∂x1∂xj
, φ3

jk = ∂2φ3

∂xj ∂xk
. (53)

According to the Duan’s topological current theory, the Taylor expansion of the solution of
φ3 in the neighborhood of the bifurcation point can generally be denoted as

A
(
x1 − z1

l

)2
+ 2B

(
x2 − z2

l

)
(t − t∗) + (t − t∗)2 = 0, (54)

9
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Figure 2. Projecting the world lines of magnetic monopoles onto the (x1 − t) plane. Two magnetic
monopoles meet and then depart at the bifurcation point.

which is followed by

A

(
dx1

dt

)2

+ 2B
dx1

dt
+ C = 0, (55)

and

C

(
dt

dx1

)2

+ 2B
dt

dx1
+ A = 0, (56)

where A,B and C are three constants. The solutions of equation (55) or equation (56)
give different directions of the branch curves (world lines of the magnetic monopoles) at the
bifurcation point. There are four kinds of important cases, which will show the physical
meanings of the bifurcation points.

Case 1(A �= 0). For � = 4(B2 − AC) > 0, we get two different directions of the velocity
field of magnetic monopoles

dx1

dt

∣∣∣∣
1,2

= −B ± √
B2 − AC

A
, (57)

which are shown in figure 2. It is the intersection of two magnetic monopoles, which means
that two magnetic monopoles meet and then depart from each other at the bifurcation point.

Case 2(A �= 0). For � = 4(B2 − AC) = 0, the direction of the velocity field of the magnetic
monopole is only one

dx1

dt

∣∣∣∣
1,2

= −B

A
, (58)

which includes three important situations. (a) One world line resolves into two world lines,
i.e., one magnetic monopole splits into two magnetic monopoles at the bifurcation point (see
figure 3(a)). (b) Two world lines merge into one magnetic monopole, i.e., two magnetic
monopoles merge into one magnetic monopole at the bifurcation point (see figure 3(b)).
(c) Two world lines tangentially contact, i.e., two magnetic monopoles tangentially encounter
at the bifurcation point (see figure 3(c)).

10
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(a)

(b)

(c)

Figure 3. (a) One magnetic monopole splits into two magnetic monopoles at the bifurcation point.
(b) Two magnetic monopoles merge into one magnetic monopole at the bifurcation point. (c) Two
world line of magnetic monopoles tangentially intersect, i.e., two magnetic monopoles tangentially
encounter at the bifurcation point.

Case 3(A = 0, C �= 0). For � = 4(B2 − AC) = 0, we have

dt

dx1

∣∣∣∣
1,2

= −B ± √
B2 − AC

C
= 0, −2B

C
. (59)

11
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(a)

(b)

Figure 4. Two important cases of equation (59). (a) Three magnetic monopoles merge into one
at the bifurcation point. (b) One magnetic monopole splits into three magnetic monopoles at the
bifurcation point.

There are two important cases: (a) three world lines merge into one world line, i.e.,
three magnetic monopoles merge into a magnetic monopole at the bifurcation point (see
figure 4(a)). (b) One world line resolves into three world lines, i.e., a magnetic monopole
splits into three magnetic monopoles at the bifurcation point (see figure 4(b)).

Case 4(A = C = 0). Equations (55) and (56) give, respectively

dx1

dt
= 0,

dt

dx1
= 0. (60)

This case is obvious (see figure 5), and similar to case 3.
The above solutions reveal the evolution of the magnetic monopoles. Besides the

encountering of the magnetic monopoles, i.e., two magnetic monopoles encounter and then
depart at the bifurcation point along different branch curves (see figure 2 and figure 3(c)), it
also includes splitting and merging of magnetic monopoles. When a multi-charged magnetic
monopole moves through the bifurcation point, it may split into several magnetic monopoles
along different branch curves (see figures 3(a), 4(b) and 5(b)). In contrast, magnetic monopoles
can merge into a magnetic monopole at the bifurcation point (see figures 3(b) and 4(a)).

12
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(a)

(b)

Figure 5. Two world lines intersect normally at the bifurcation point. This case is similar to
figure 4. (a) Three magnetic monopoles merge into one at the bifurcation point. (b) One magnetic
monopole splits into three magnetic monopoles at the bifurcation point.

At the same time, the remaining component can be deduced by

dxj

dt
= x

j

0 + x
j

1

dx1

dt
, j = 2, 3. (61)

As in the previous work, the identical conversation of the topological charge shows the sum of
the topological charge of these split magnetic monopoles must be equal to that of the original
magnetic monopoles at the bifurcation point, i.e.,∑

i

βli ηli =
∑
f

βlf ηlf , (62)

for fixed l. Furthermore, from the above studies, we see that the generation, annihilation and
bifurcation of magnetic monopoles are not gradually changed, but suddenly changed at the
critical points.

5. The bifurcation of a magnetic monopole at a second-order degenerate point

In the preceding section we studied the bifurcation of a magnetic monopole at a first-order
degenerate point. In this section, we investigate the branching process of the magnetic charge

13
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current at a second-order degenerate point x∗ = (t∗, �x∗), at which the rank of the Jacobian
matrix

[
∂φ

∂x

]
is

rank

[
∂φ

∂x

]∣∣∣∣
(t∗, �x∗)

= 3 − 2 = 1. (63)

Suppose that

∂φ1

∂x3

∣∣∣∣
(t∗, �x∗)

�= 0. (64)

With the same reasons as in obtaining (33), in the neighborhood of x∗, from φ1(x) = 0 we
have the function relationship

x3 = x3(t, x1, x2). (65)

In order to determine the values of the first- and second-order partial derivatives of x3 with
respect to t, x1 and x2, one can substitute the relationship (65) into φ2(x) = 0 and φ3(x) = 0.
Then, we get

F1(t, x
1, x2) = φ2(t, x1, x2, x3(t, x1, x2)) = 0,

(66)
F2(t, x

1, x2) = φ3(t, x1, x2, x3(t, x1, x2)) = 0.

For calculating the partial derivatives of the function F1 and F2 with respect to t, x1 and x2,
one can take note of (65) and use six similar expressions to (47), i.e.,

∂Fc

∂t

∣∣∣∣
(t∗, �x∗)

= 0,
∂Fc

∂x1

∣∣∣∣
(t∗, �x∗)

= φ,
∂Fc

∂x2

∣∣∣∣
(t∗, �x∗)

= φ, c = 1, 2. (67)

So the Taylor expansions of F1(t, x
1, x2) and F2(t, x

1, x2) can be written in the neighborhood
of (t∗, �x∗) by

Fc(t, x
1, x2) ≈ Ac1(t − t∗)2 + Ac2(t − t∗)(x1 − x1∗) + Ac3(t − t∗)(x2 − x2∗)

+ Ac4(x
1 − x1∗)2 + Ac5(x

1 − x1∗)(x2 − x2∗) + Ac6(x
2 − x2∗)2 = 0, (68)

where c = 1, 2 and

Ac1 = 1

2

∂2Fc

∂t2

∣∣∣∣
(t∗, �x∗)

, Ac2 = ∂2Fc

∂t∂x1

∣∣∣∣
(t∗, �x∗)

, Ac3 = ∂2Fc

∂t∂x2

∣∣∣∣
(t∗, �x∗)

,

(69)

Ac4 = 1

2

∂2Fc

(∂x1)2

∣∣∣∣
(t∗, �x∗)

, Ac5 = ∂2Fc

∂x1∂x2

∣∣∣∣
(t∗, �x∗)

, Ac6 = 1

2

∂2Fc

(∂x2)2

∣∣∣∣
(t∗, �x∗)

.

Dividing (68) by (t − t∗)2 and taking the limit t → t∗, one obtains the two quadratic equations
of dx1

dt
and dx2

dt
,

Ac1 + Ac2
dx1

dt
+ Ac3

dx2

dt
+ Ac4

(
dx1

dt

)2

+ Ac5
dx1

dt

dx2

dt
+ Ac6

(
dx2

dt

)2

= 0, (70)

and further, eliminating the variable dx1

dt
, one has the equation of dx2

dt
in the form of a determinant∣∣∣∣∣∣∣∣∣∣

A14 A15v + A12 A16v
2 + A13v + A11 0

0 A14 A15v + A12 A16v
2 + A13v + A11

A24 A25v + A22 A26v
2 + A23v + A21 0

0 A14 A25v + a22 A26v
2 + A23v + A21

∣∣∣∣∣∣∣∣∣∣
= 0, (71)

14



J. Phys. A: Math. Theor. 41 (2008) 315214 S-F Mo et al

with the variable v = dx2

dt
, which is a four-order equation of dx2

dt

a1

(
dx2

dt

)4

+ a2

(
dx2

dt

)3

+ a3

(
dx2

dt

)2

+ a4

(
dx2

dt

)
+ a5 = 0. (72)

Hence, different directions of the branch curves at the second-order degenerate point x∗ is
structured. The largest number of different branch curves is four, which means an original
magnetic monopole with the topological quantum βη can split into at most four particles at
one time with charges βlηl(l = 1, 2, 3, 4) satisfying

β1η1 + β2η2 + β3η3 + β4η4 = βη. (73)

6. Conclusions

Our conclusions can be summarized as follows: first, in a charged two-component Bose–
Einstein system, we obtained the dynamic form of a magnetic monopole and quantized the
magnetic charge at the topological level in units of h̄c

e
. The topological quantum numbers

are determined by the Hopf indices and Brouwer degrees (i.e. the winding numbers), which
are topological numbers. Second, the evolution of magnetic monopoles is studied from the
topological properties of a three-dimensional vector field �φ. We find that there exist crucial
cases of branch processes in the evolution of the magnetic monopoles when D(

φ

x
) �= 0, i.e., ηl

is indefinite. This means that the magnetic monopoles generate or annihilate at the limit points
and encounter, split or merge at the bifurcation points of the three-dimensional vector field �φ,
which shows that the magnetic monopoles system is unstable at these branch points. Third,
we show the result that the velocity of a magnetic monopole is infinite when it is annihilating
or generating, which is obtained only from the topological properties of the three-dimensional
vector field �φ. Fourth, we must point out that there exist two restrictions of the evolution
of magnetic monopoles. One restriction is the conservation of the topological charge of the
magnetic monopoles during the branch process (see equations (28) and (62)), the other is that
the number of different directions of the world lines of magnetic monopoles is at most four
at the bifurcation points (see equations (55) and (56)). The first restriction is already known,
but the second is pointed out here for the first time to our knowledge. We hope that it can
be verified in the future. Finally, we would like to point out that all the results in this paper
have been obtained only from the viewpoint of topology without using any particular models
or hypothesis.
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